
Integrating Ontology Matching Tools

into the SEALS Platform

Christian Meilicke, Cássia Trojahn,
Jakob Huber and Jérôme Euzenat

July 7, 2011

Abstract

This tutorial explains how to prepare, package and zip an ontology
matching tool to be integrated into the SEALS platform. It explains how
to check that the generated zip-file is valid and can be executed on the
platform. Further, it describes how the wrapped tool can be evaluated
locally with one of the Benchmark, Conference, and Anatomy test suites
used in the Ontology Alignment Evaluation Initiative.

1 Introduction

Wrapping a matching tool consists of mainly two steps. (1) You have to place
all required libraries in a certain folder structure and (2) you need a simple java
class that acts as a bridge between the signature of the align-method of your
system and the signature expected by the SEALS platform.

The exptected folder structure looks like this:

descriptor.xml * describes package content

bin/
lib/

* tool libs and other libs required by your tool

* bridge class zipped as .jar

* (X) some *.bat or *.sh scripts

conf/
* files required by your tool to be accessed at runtime

lib/ (X)
* (keep empty)

The SEALS platform is currently under development. To be compliant
with future versions the package has to contain some elements that are cur-
rently not used. They are marked with an (X). The descriptor file is an XML
file that describes the content of the package in simple and self-explaining

1

way. You can download a full example demomatcher-package.zip(windows)
or demomatcher-package.zip(linux)1.

The interface that has to be implemented in the bridge has the signature
URL align(URL sourceOnt, URL targetOnt) where it is expected that the
generated alignment is stored in a temporary file and the URL of this file is
returned. Note also that the generated file is expected to be conform to the
format of the Alignment API2.

In the following we show how to generate such a package and its bridge.
If you are a developer of a tool that implements the alignment API you can
continue with §2 and skip over §3. If this is not the case you can skip over §2
and continue directly with §3.

2 Simplified procedure for systems implement-
ing the Alignment API

For those matchers implementing the Alignment API, no programming is nec-
essary. An ant script is able to generate the bridge, compile it, package it, and
validate it. The procedure is the following:

1. get package-template.zip, unzip it and move to its content;
2. check that everything works by calling ant pack, ant validate, if all return

a success, then perform ant origin;
3. move all the jars needed for running your matcher, including the Align-

ment API jars, to the bin/lib directory (subdirectory authorised);
4. edit local.properties (important properties are classname, the fully qual-

ified name of the class to implementing AlignmentProcess, and scriptext,
generating a Unix or Windows package);

5. run ant pack.

If your matcher does not rely on external resources besides jar-files, this
should be done. You have a zip file available which is your package and you
can progress to §5 (in fact, you can even execute the step of §5.1 by running
ant validate).

On the other hand, if it needs some runtime configuration files, these could
be put in the conf directory, before running again ant pack, but then it may
be necessary to edit src/bridge/Bridge.java for telling your matcher where
to get these configurations.

If it is more complex, it is unfortunately necessary to rely on the documen-
tation and procedure of §3. However, you can start from what you have built:
the descriptor.xml file and the src/bridge/Bridge.java Java file.

1All files can be downloaded from http://oaei.ontologymatching.org/2011/tutorial/.
2http://oaei.ontologymatching.org/2011/align.html

2

http://oaei.ontologymatching.org/2011/tutorial/windows/demomatcher-package.zip
http://oaei.ontologymatching.org/2011/tutorial/linux/demomatcher-package.zip
http://oaei.ontologymatching.org/2011/tutorial/package-template.zip
http://oaei.ontologymatching.org/2011/tutorial/
http://oaei.ontologymatching.org/2011/align.html

3 Standard procedure for other tools

In the following we assume that you are using eclipse. Note that this is not
a requirement, but just helps to keep the explanation brief. These instruc-
tions require that you have downloaded demomatcher-package.zip(windows)
or demomatcher-package.zip(linux) as well as seals-omt-client.jar. Our
demomatcher example is described briefly in Appendix A.

1. Create a new eclipse project and ensure that all libraries required by your
matcher are on the build path (for our example it was demomatcher.jar,
simmetrics.jar and owlapi.jar; for your matcher it will be some other
libraries).

2. Add also the jar file seals-omt-client.jar to your build path. It con-
tains besides some other classes also the interfaces you have to implement.

3. Create some package and a class that extends AbstractPlugin and imple-
ments IOntologyMatchingToolBridge as shown in Appendix A.4 (down-
load MatcherBridge.java). This class acts as a bridge between the func-
tionalility of your tool and the functionality required by SEALS. Do not
change the methods canExecute and getType. The two align methods
are specific for your tool.

4. Export your tool bridge as a jar-file. You do not need to include any of the
libraries on your build path into that jar, only the class you have created
in step 3.

5. Copy the folders of the packaged tool of our example, remove the jar-files
of the example and replace them by the jar-files that are required by your
matcher.

6. Add to the directory conf the resources required at runtime by your sys-
tem. These files will at runtime be located at the current working direc-
tory.

7. Modify the descriptor.xml according to these changes. Also change the
meta information in the first part of the descriptor.xml file. Specially,
you need to specify the class bridge and the library dependencies.

8. Zip the content of the package (do not include the package folder itself in
the zip-file).

Even if your system does not implement the Alignment API, you can use the
ant facilities presented in §2 to package your tool instead of manually following
all steps listed here. For that, you have to follow the steps indicated in §2 as well
as you have to write the src/bridge/Bridge.java file (or modify the provided
template example).

3

http://oaei.ontologymatching.org/2011/tutorial/windows/demomatcher-package.zip
http://oaei.ontologymatching.org/2011/tutorial/linux/demomatcher-package.zip
http://oaei.ontologymatching.org/2011/tutorial/seals-omt-client.jar
http://oaei.ontologymatching.org/2011/tutorial/MatcherBridge.java

4 Using additional resources

Most matching systems require some additional resources to be available during
execution in order to run properly. Examples are configuration files, lists of
stopwords, dictionary files of Wordnet, and many other kind of resources. If
such resources are required by a matching system, they have to be copied to
the directory conf, see also Appendix §A.1. The SEALS platform will in the
deployment phase of the tool copy the contents of this folder (recursively, if there
are sub folders) into the working directory where the matching process will be
executed later on. Note that the files that have to be stored can typically be
found in the base folder of a matching system.

For instance, consider that demomatcher requires the file threshold.txt to
be available in the directory configuration/ relative to the working directory
where demomatcher is executed.3 For that reason we have placed it in the
package of the matcher as shown in §A.1.

If your system requires some additional libraries/applications/servers that
have to be installed prior to running the matcher, you have to inform us about
this. We will take care that required software is installed on the machines where
your system will finally by evaluated.

5 Test your packaged tool

There are three types of validation available for testing your tool-package. First,
there is a validation of the structure and content of the zipped package. Second,
there is a test in which you run the packaged tool in the same way as it will
be run by the platform. Third, there is a test in which you run a complete
evaluation including the computation of precision and recall.

5.1 Validating structure and content

The jar-file seals-omt-validator.jar can be used to check the structure and
content (e.g., correctness of references) of the package. For that purpose you
need to have your tool zipped as described in the last step of §3. If you have
followed the steps in §2, ant pack generates such zip file (mytool.zip in the
provided example, as indicated in the local.properties file).

In our example we called the resulting zip-file demomatcher-package.zip.
Given that in the current working directory we have seals-omt-validator.jar
and demomatcher-package.zip, we can check the zipped package with the fol-
lowing command.

A:\temp>java -cp seals-omt-validator.jar

eu.sealsproject.platform.res.tool.utils.clients.validation.PackageValidator

-v all -r demomatcher-package.zip

3In most cases the settings or configuration file(s) will be placed directly in conf. We have
used this example to illustrate that it is possible to use subdirectories if required.

4

http://oaei.ontologymatching.org/2011/tutorial/seals-omt-validator.jar

In case of a successful test, the following output is displayed.

log4j:WARN No appenders could be found for logger+

(eu.sealsproject.platform.res.tool.bundle.factory.impl.DirectoryNormalizer).

log4j:WARN Please initialize the log4j system properly.

Package ’A:\temp\demomatcher-package.zip’ is valid

Package structure validation report:

- Tool package configuration: [Passed]

- Binary directory..........: [Passed]

- Configuration directory...: [Passed]

- Library directory.........: [Passed]

Package descriptor validation report:

- PackageConfiguration.............: [Passed]

- DeployCapabilityConfiguration....: [Passed]

+ Shell script configuration:

- Script file ’deploy.bat’ found.

- UndeployCapabilityConfiguration..: [Passed]

+ Shell script configuration:

- Script file ’undeploy.bat’ found.

- StartStopDependency..............: [Passed]

- StartCapabilityConfiguration.....: [Passed]

+ Shell script configuration:

- Script file ’start.bat’ found.

- StopCapabilityConfiguration......: [Passed]

+ Shell script configuration:

- Script file ’stop.bat’ found.

- InvokeCapabilityConfiguration....: [Passed]

+ Java application configuration:

- Jar file ’demomatcher-bridge.jar’ found.

- Class ’de.unima.ki.demomatcher.seals.MatcherBridge’ found.

- Dependencies specified:

+ Dependency ’lib/demomatcher.jar’ found and valid.

+ Dependency ’lib/owlapi.jar’ found and valid.

+ Dependency ’lib/simmetrics.jar’ found and valid.

- ShellScriptFileUniqueness........: [Passed]

In this example the validation has been passed successfully. In case of problems,
they are reported.

5.2 Running the tool

In the SEALS platform your matcher will be executed in a certain folder. To
simulate this behavior for the purpose of doing this test, you first have to set the
system variable SEALS_HOME to some folder on your machine where you have full
read, write and execution rights. Under Windows use the following command.

A:\temp>set SEALS_HOME=A:\seals\sealshome

If you are using a Unix system you have to type the following:

5

christian@arnheim:˜$ export SEALS_HOME="/home/christian/sealshome"

Note that this variable is only valid in the same terminal. Please change now
the current directory to the SEALS_HOME directory in order to execute your
matcher! We have prepared a client which connects to the tool via its bridge
and executes its align method as it will be the case when the tool is deployed
in the SEALS platform. It is available in the jar-file seals-omt-client.jar
that contains also the interfaces to be implemented. The client works directly
on the unzipped tool package.

You can check if the unzipped package can be executed as follows (we un-
zipped demomatcher-package.zip into A:/temp/demomatcher-package). Note
that it is one command without any line breaks.

A:\seals\sealshome>java -jar A:/temp/seals-omt-client.jar

A:/temp/demomatcher-package

Please ensure that you execute this command from the SEALS_HOME directory
and ensure that the path to the jar-file and the unzipped tool-package is valid.
In case of problems use absolute paths. If you run this command, it generates
the following output.

Syntax (simple test): <packageLocation> <-t>

Or (full test): <packageLocation> <-e> <testsuite> <output>

Or (for local test): <packageLocation> <-o> <ontologyURL1> <ontologyURL2>

Replace <testsuite> with one of Anatomy2010, Benchmark2010, BenchmarkII2011

Conference2010, or MLConference

You can chose between one of three options.

• -t Two predefined ontologies from the Conference test suite in the SEALS
test repository are used as input to your matching system. To run this
simple test, a connection to the internet is required.

• -o You can specify as additional arguments the URLs of two ontologies,
which can for example be locally stored on your machine.

• -e You can run a full evaluation locally on your machine and store the
evaluation results in a tab-separated output file. Again, a connection to
the internet is required to retrieve the input ontologies. Do not forget the
argument which specifies the file in which results are stored.

We recommend to start with -t. Here is the full command:

A:\seals\sealshome>java -jar A:/temp/seals-omt-client.jar

A:/temp/demomatcher-package -t

If everything is fine and you are connected to the internet, the following messages
are printed to the screen.

6

http://oaei.ontologymatching.org/2011/tutorial/seals-omt-client.jar

>>> Preparing environment ...

>>> All files are copied to SEALS_HOME. Press y to start: y

... maybe some debugging/progress output generated by your system

>>> Result stored to URL: file:/C:/.../Temp/align438520766.rdf

>>> Matching finished. Press y to clear SEALS_HOME: y

>>> Cleaning up environment ...

Note that two times you are requested to type y to make the process continue.
This allows you to inspect the content of SEALS HOME as well as to check the
automatically generated alignment. Once the process has finished, the contents
of SEALS HOME will be deleted again.

If you have no internet connection (or want to test with different ontologies),
you can use the -o option and specify a second and third parameter, which have
to be URLs pointing to the (locally stored) ontologies like file:///C:/....
Keep in mind that a valid URL is required.

5.3 Evaluating the tool

Once you have tested successfully the -t or the -o option, it is time to test
if your system manages to run a complete evaluation. For doing so you can
use the -e option and chose between one of Anatomy2010, Benchmark2010,
BenchmarkII2011,Conference2010, or MLConference.4 For example, type this:

A:\seals\sealshome>java -jar -e Benchmark2010 output.txt

This runs all of the Benchmark test cases (version used for OAEI 2010) subse-
quently and displays some progress information on the screen.

Note that a full evaluation can be run successfully while there might still be
some problems related to the generated alignments. For that reason you should
inspect the output files carefully. A typical example might look like this:

101 1.0 1.0 file:/C:/.../align3100047406330015693.rdf

103 1.0 1.0 file:/C:/.../align6763189370432843972.rdf

104 1.0 1.0 file:/C:/.../align6804694726976981529.rdf

201 0.773 0.949 file:/C:/.../align6060859294027567944.rdf

201-2 0.969 1.0 file:/C:/.../align1927738950787331860.rdf

The file shows for each test case precision and recall of the alignment generated
by your system as well as the path to the generated alignment.

If precision and recall values are missing, the generated alignment could not
be parsed. In such a case there is an entry in an additional column that informs
about possible problems. This will help you to get rid of the underlying problem.
Incorrect or missing header information in the alignment is often the reason for
this problem (e.g., filling the uri-tags with something that is not an URI).

Keep also track of lines that contain unexpected results for precision and re-
call (e.g. 0 lines) at places where you would not expect them. Typical problems
may be related to one of the following issues:

4MLConference is a sample from a new multilingual dataset that has been added for test
purpose. It will not be evaluated in OAEI 2011.

7

• You system might have reversed the order of the input ontologies such
that the matched concepts, properties, or instances appear in a reversed
order.

• Your system might not be able to cope correctly with encoding issues.
This has been the case for some systems with respect to some test cases
in the Benchmark suite.

• Your system might not use namespaces that prefix the local names of
concepts and properties in the appropriate way. Take care that something
like http://xyz#Person appears in the alignment, and not just Person
or file://C:xyz.owl#Person.

8

A A full example: demomatcher

The tool that we analyze as an example is called DemoMatcher5. Its functional-
ity is encoded in a jar-file demomatcher.jar. It requires the additional libraries
simmetrics.jar and owlapi.jar to be available on the classpath. Further, it
uses a simple configuration file to specify a threshold. In some of the following
sections of this Appendix we show how to package DemoMatcher and how to
write the so called ToolBridge, which will be the interface through which the
SEALS platform accesses its functionality. All the required files (jars, wrapped
tool file) can be downloaded in a windows and linux-variant.

A.1 Structure of the tool package

The main jar-file of DemoMatcher and the required libraries have to be packaged
in a specific folder structure. Our example is based on the Windows variant.
Please download demomatcher-package.zip and unzip it on your machine. The
resulting directory structure will look like this:

bin/

lib/

demomatcher.jar

owlapi.jar.jar

simmetrics.jar

demomatcher-bridge.jar

deploy.bat (or *.sh on linux)

start.bat

stop.bat

undeploy.bat

conf/

configuration/

threshold.txt

lib/

(empty)

descriptor.xml

Besides the libraries required by the matcher, you find some additional files
and folders. Some of these folders, such as lib, are not required by Demo-
Matcher. However, it is obligatory that these folders exist.

Some matchers may need additional resources to the required Jar-files. These
may be stored in the conf directory which is accessible at runtime. Our simple
matcher has only one parameter, namely its threshold, which can be defined in
a configuration file. It is stored in the file threshold.txt.

The four files deploy.bat, start.bat, stop.bat, and undeploy.bat (*.sh
under Unix) have to be part of your tool package. The four files provided with

5The steps we present here are the same for using the example presented in §2

9

http://oaei.ontologymatching.org/2011/tutorial/windows/demomatcher-package.zip
http://oaei.ontologymatching.org/2011/tutorial/linux/demomatcher-package.zip
http://oaei.ontologymatching.org/2011/tutorial/windows/demomatcher-package.zip

our example – which currently do not perform any action – should also be used
for any other tool.

The two additional files that are relevant and specific for our matcher are
the files demomatcher-bridge.jar and descriptor.xml. We will explain them
in the subsequent sections.

A.2 Content of descriptor file

It is very easy to modify the descriptor file according to our needs. We explain
it step by step.

<?xml version="1.0" encoding="UTF-8"?>

<ns:package

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ns="http://www.seals-project.eu/resources/res/tools/bundle/v1"

id="DemoMatcher"

version="1.0">

<ns:description>DemoMatcher is a matching tool developed

for testpurpose.</ns:description>

<ns:endorsement>

<ns:copyright>Copyright information</ns:copyright>

<ns:license>Specification of license</ns:license>

</ns:endorsement>

...

In the first part you have to define the id of your matcher – chose its name
or an abbreviation in case the name is too verbose – its version and a short
description. You can also specify copyright and license information. While the
first part contains some meta-information, the final part is about the wrapping
of the tool itself. It describes where required libraries can be found inside the
package.

<ns:wrapper>

<ns:management>

...

...

...

</ns:management>

<ns:bridge>

<ns:class>de.unima.ki.demomatcher.seals.MatcherBridge</ns:class>

<ns:jar>demomatcher-bridge.jar</ns:jar>

<ns:dependencies>

<ns:lib>lib/demomatcher.jar</ns:lib>

<ns:lib>lib/owlapi.jar</ns:lib>

<ns:lib>lib/simmetrics.jar</ns:lib>

</ns:dependencies>

</ns:bridge>

10

</ns:wrapper>

As you can see, both the libraries and the main jar of the matcher have to
be specified as dependencies. In addition, a class has to be implemented that
acts as bridge between the functionality implemented in DemoMatcher and
the interface required by the SEALS platform. The naming of this class and
its package does not need to follow any pattern. In our example, it is the
class de.unima.ki.demomatcher.seals.MatcherBridge that can be found in
demomatcher-bridge.jar. Note also that the name of this jar can be chosen
arbitrarily as long as it is correctly referenced in the file descriptor.xml. The
file demomatcher-bridge.jar contains only this class and nothing else. In
the following section we explain how to develop this single class and the file
demomatcher-bridge.jar.

A.3 Development of the tool bridge

Different matching systems come with different interfaces. Some systems might
use the following signature to do their job of matching two ontologies.

// matches to ontologies referred to via their filepath and

// return the File that has been generated as a result.

File match(String filepathSourceOnt, String filepathTargetOnt)

The interface we proposed for using the SEALS online evaluation service was
based on the following signature.

// matches to ontologies referred to via their URI and

// returns the alignment generated directly as a string.

String match(URI filepathSourceOnt, URI filepathTargetOnt)

The interface that has to be implemented within this tutorial for running a tool
under the SEALS platform, has the following signature.

// matches to ontologies referred to via their URL and

// returns the URL of the file generated locally

URL align(URL sourceOnt, URL targetOnt)

Note that the return value of this methods is a URL. You have to create a
temporary file where you store the alignment generated by your system and
return the URL of this alignment.

In our DemoMatcher there exists a method with the signature that fit-
ted with the SEALS online evaluation service. Please take now a look at
the code depicted in §A.4 to see how this method can be called from within
URL align(URL source, URL target), the method that has to be implemented.
For our example this method is quite simple. It converts the input URLs into
URIs, calls the align-method of DemoMatcher, stores the result in a temporary
file, and returns the URL of this file. During this process several Exceptions
might be caught. Whenever this happens a ToolBridgeException is thrown.
This means that the wrapping has not been done correctly, by opposition to an

11

error of the matcher. For example, it is not possible to create a temporary file.
It is also possible to throw a ToolException to indicate that the matcher itself
had some problems. Both types of exceptions will help to debug the tool within
the SEALS platform whenever problems occur.

In addition to the method that wraps the main functionality of the matcher,
there are three more methods. One of them is an align-method that has three
input parameters to point to an additional input alignment. If a matcher sup-
ports exploiting an additional input alignment (e.g., subtask #4 of the anatomy
track), this method should be implemented. Otherwise follow the example in
the appendix. Furthermore, there are two additional methods that should not
be modified.

A.4 Example for a bridge

The following code is also available in the file MatcherBridge.java, inside the
demomatcher-package.zip file.

package de.unima.ki.demomatcher.seals;

import java.io.File;

import java.io.FileWriter;

import java.io.IOException;

import java.net.URISyntaxException;

import java.net.URL;

import de.uma.alignment.matcher.demo.DemoMatcher;

import eu.sealsproject.platform.res.domain.omt.IOntologyMatchingToolBridge;

import eu.sealsproject.platform.res.tool.api.ToolBridgeException;

import eu.sealsproject.platform.res.tool.api.ToolException;

import eu.sealsproject.platform.res.tool.api.ToolType;

import eu.sealsproject.platform.res.tool.impl.AbstractPlugin;

public class MatcherBridge extends AbstractPlugin implements

IOntologyMatchingToolBridge {

/**

* Aligns to ontologies specified via their URL and retunrs the

* URL of the resulting alignment, which should be stored locally.

*

*/

public URL align(URL source, URL target)

throws ToolBridgeException, ToolException {

DemoMatcher demoMatcher;

try {

demoMatcher = new DemoMatcher();

try {

String alignmentString = demoMatcher.align(source.toURI(), target.toURI());

try {

File alignmentFile = File.createTempFile("alignment", ".rdf");

FileWriter fw = new FileWriter(alignmentFile);

fw.write(alignmentString);

fw.flush();

12

http://oaei.ontologymatching.org/2011/tutorial/windows/demomatcher-package.zip

fw.close();

return alignmentFile.toURI().toURL();

}

catch (IOException e) {

throw new ToolBridgeException("cannot create file for results", e);

}

}

catch (URISyntaxException e1) {

throw new ToolBridgeException("cannot convert the input param to URI");

}

}

catch (NumberFormatException e2) {

throw new ToolBridgeException("cannot read from configuration file", e2);

}

catch (IOException e3) {

throw new ToolBridgeException("cannot access configuration file", e3);

}

}

/**

* This functionality is not supported by the tool. In case

* it is invoked a ToolException is thrown.

*/

public URL align(URL source, URL target, URL inputAlignment)

throws ToolBridgeException, ToolException {

throw new ToolException("functionaility of called method is not supported");

}

/**

* In our case the DemoMatcher can be executed on the fly. In case

* prerequesites are required it can be checked here.

*/

public boolean canExecute() {

return true;

}

/**

* The DemoMatcher is an ontology matching tool. SEALS supports the

* evaluation of different tool types like e.g., reasoner and storage systems.

*/

public ToolType getType() {

return ToolType.OntologyMatchingTool;

}

}

13

	Introduction
	Simplified procedure for systems implementing the Alignment API
	Standard procedure for other tools
	Using additional resources
	Test your packaged tool
	Validating structure and content
	Running the tool
	Evaluating the tool

	A full example: demomatcher
	Structure of the tool package
	Content of descriptor file
	Development of the tool bridge
	Example for a bridge

